Empirical-evidence Equilibria in Stochastic Games

Nicolas Dudebout

Context

Multiagent problems

- stock market
- group of robots

- predictive
- prescriptive

- Game-theoretic approach
 - selfish agents
 - different solution concepts

Empirical-evidence Equilibrium (EEE)

Motivation

Definition

Existence

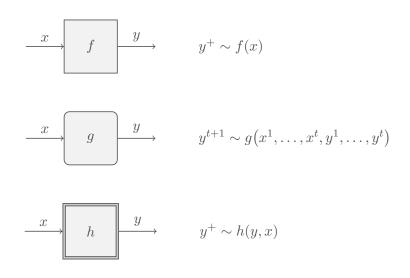
Comparison

Characterization

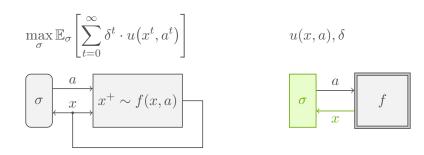
Predictive Use

Prescriptive Use

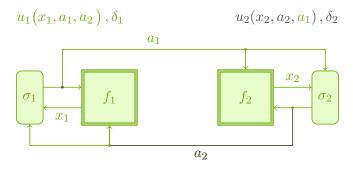
Graphical convention



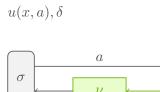
Markov Decision Process (MDP)

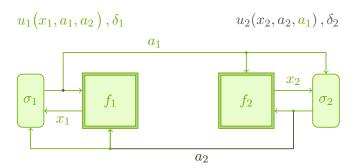


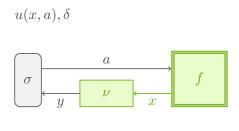
Stochastic Game



Partially Observable Markov Decision Process (POMDP)





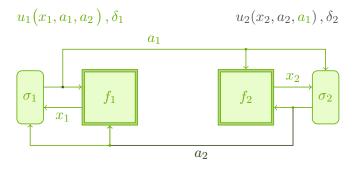


Recap

- Multiagent problems
- Game-theoretic approach
- Nash equilibrium in stochastic game \iff unknown POMDPs

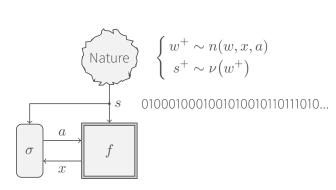
POMDP intractable MDP solved

Stochastic Game

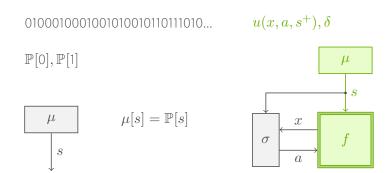


Nature

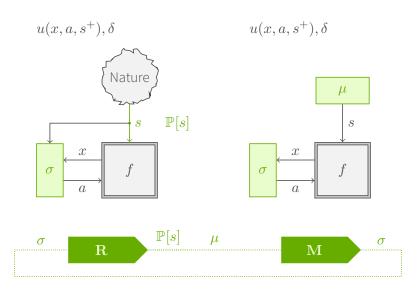
$$u(x, a, s^+), \delta$$



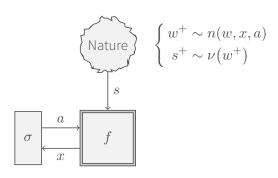
Simple Consistency



Two Systems



Consistency



$$\mu[s^+] = \mathbb{P}[s^+]$$

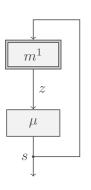
$$= \lim_{t \to \infty} \mathbb{P}[S^{t+1} = s^+]$$

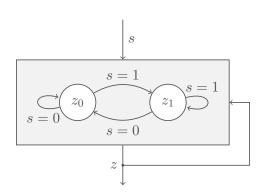
$$= \sum_{w^+, w, x, a} \nu(w^+)[s^+] \cdot \pi[w, x] \cdot \sigma(x)[a] \cdot n(w, x, a)[w^+]$$

Depth-1 Consistency

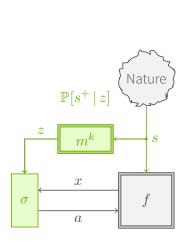
0101010101010101010101010101...

 $\mathbb{P}[00], \mathbb{P}[01], \mathbb{P}[11], \mathbb{P}[10] \iff \mathbb{P}[0 \mid 0], \mathbb{P}[1 \mid 0], \mathbb{P}[0 \mid 1], \mathbb{P}[1 \mid 1]$

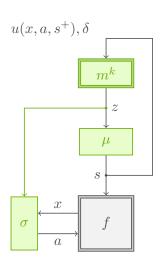




Two Systems

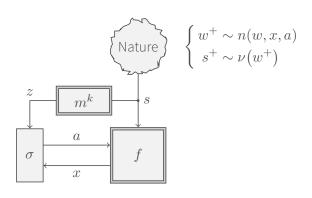


Real System: ${f R}$



Mockup System: M

Depth-k Consistency



$$\mu(z)[s^+] = \mathbb{P}[s^+ \mid z]$$
$$= \lim_{t \to \infty} \mathbb{P}[S^{t+1} = s^+ \mid Z^t = z]$$

Recap

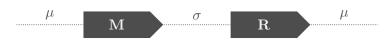
Start with one agent

Arbitrarily fix a model m^k

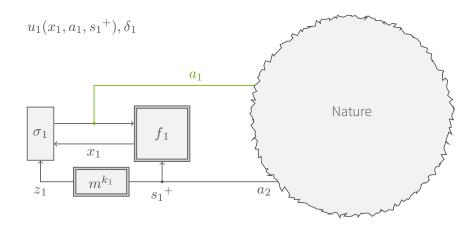
Split hard problem:

- Markov chain ${f R}$ \Longrightarrow consistent predictor μ
- MDP \mathbf{M} \Longrightarrow optimal strategy σ

EEEs are fixed points of:

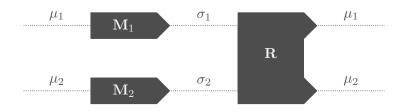


Stochastic Game



Empirical-evidence Equilibrium

 m^{k_1} and m^{k_2} fixed



 $(\mu_1, \sigma_1, \mu_2, \sigma_2)$ is an ε empirical-evidence equilibrium (ε EEE)if:

- μ_1 is consistent with \mathbf{R}
- μ_2 is consistent with ${f R}$

- σ_1 is ε optimal for \mathbf{M}_1
- σ_2 is arepsilon optimal for \mathbf{M}_2

EEE vs Nash

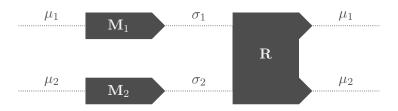
- optimization complexity fixed by agent not opponents
- always implementable
- · each agent knows when at equilibrium
- less intrinsic to the problem

Existence of ε EEEs

Theorem

For any m^{k_1} and m^{k_2} , there exists an ε EEE.

Proof.



- ε and Gibbs distribution $\implies \mu_i \mapsto \sigma_i$ is a function
- $\mu \mapsto \mu$ is a continuous function
- set of predictors is compact and convex
- Brouwer's fixed point theorem

Theorem

For any m^{k_1} and m^{k_2} , there exists a EEE.

Proof.

- $\mu \mapsto \mu$ is a closed-graph correspondence
- set of predictors is compact and convex
- Kakutani's fixed point theorem

Characterization of EEEs New New York

Theorem

Exogenous EEEs in perfect-monitoring repeated games yield correlated equilibria of the underlying one-shot game.

Repeated game:

Stochastic game without a state

Correlated equilibrium:

Nash equilibrium with common source of randomness

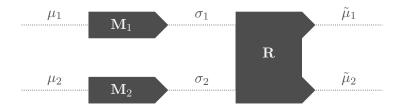
Recap

- multiagent EEE identical to single agent
- each agent arbitrarily picks a model m^k
- EEEs always exist
- EEEs induce correlated equilibria in repeated games

Asset Management Example

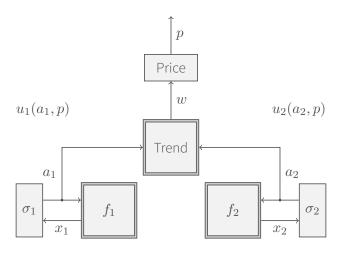
```
State holdings x_i \in \llbracket 0, M \rrbracket Action sell one, hold, or buy one a_i \in \{-1, 0, 1\} Signal price p \in \{\text{Low}, \text{High}\} Dynamic x_i^+ = x_i + a_i Stage cost p \cdot a_i Nature market trend w \in \{\text{Bull}, \text{Bear}\} Model depth 0
```

Iterative Process

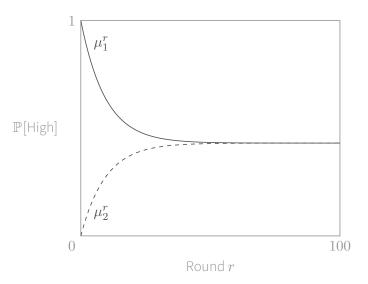


$$\mbox{Update Rule} \quad \mu_i^{r+1} = (1-\alpha^r)\mu_i^r + \alpha^r(\tilde{\mu}_i - \mu_i^r)$$

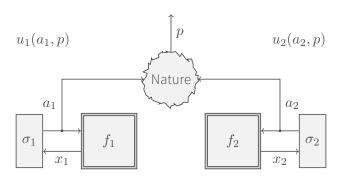
Theoretical Predictor



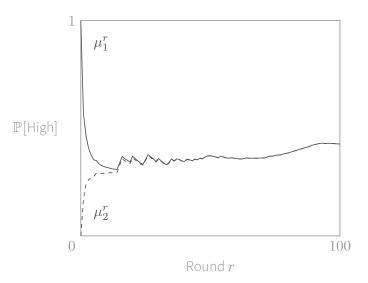
$$\mbox{Update Rule} \quad \mu_i^{r+1} = (1-\alpha)\mu_i^r + \alpha(\tilde{\mu}_i - \mu_i^r)$$



Empirical Predictor



Update Rule
$$\mu_i^{r+1} = (1-\alpha^r)\mu_i^r + \alpha^r \left(\tilde{\mu}_i^T - \mu_i^r\right) \\ \alpha^r \text{ non-summable, square-summable}$$



Hawk-dove Game

Repeated game

	h	d
Η	-1, -1	6,0
D	0,6	3, 3

Nash equilibria (H,d) and (D,h)

Want correlated equilibrium alternating between the two

Hawk-dove Game

Depth-2 models

Strategies:	Associated predictors:
$\sigma_1(d, h) = 0.999 \mathrm{H} + 0.001 \mathrm{D}$	$\mu_1(d, h) = 0.996 d + 0.004 h$
$\sigma_1(h, d) = 0.999 D + 0.001 H$	$\mu_1(h, d) = 0.996 h + 0.004 d$
$\sigma_1(h,h) = 0.5H + 0.5D$	$\mu_1(h,h) = 0.5 h + 0.5 d$
$\sigma_1(d,d) = 0.5H + 0.5D$	$\mu_1(d, d) = 0.5 h + 0.5 d$

Strategy approximately optimal as δ close enough to one

Generalizes to any convex combination of pure Nash equilibria

Recap

Predictive given models and adaptation rule a EEE emerges
Prescriptive implement desired outcome as a EEE

Extensions

- n agents
- endogenous models $z^+ \sim m(z, x, a, s)$

Empirical-evidence Equilibrium (EEE)

Motivation intractable problem

Definition split into Markov chain and consistent MDPs
Existence fixed-point theorems
Comparison lower computational requirements
Characterization correlated equilibrium in repeated game
Predictive Use model to understand stock price
Prescriptive Use desired outcome encoded as EEE